

Beam-Beam Phenomena in Tevatron and Need in Better Understanding

Vladimir Shiltsev

Tevatron Beam-Beam List

- Sqrt(Time) at 150
- Cogging effects at 150
- Loss on ramp
- Reduced eff.emittance and luminosity lifetime
- "Scallops"
- Poor proton lifetime due to IP size mismatch
- Longitudinal IP position effect
- Losses vs crossing angle and separation at IP
- Lifetime(s) vs helix size

Fight for better Tevatron

	10/02	03/03	09/03	02/04	p/p only
Record Luminosity, e30	36	41	50	63	n/a
Protons/bunch	170e9	205e9	245e9	245e9	same
Pbars/bunch	22e9	23e9	25e9	30e9	same
P-loss at 150 GeV	14%	10%	8%	5%	5%
Pbar-loss at 150	9%	4%	2%	2%	2%
P-loss on ramp	6%	5%	5%	4%	3% *
Pbar-loss on ramp	8%	11%	8%	6%	2%
Pbar-loss in squeeze	5%	2%	3%	1%	0%
at the beginning of store	•				
Pbar lifetime at HEP, hr	~40	~35	~35	~30	~900
Proton lifetime at HEP, hr	~90	~60	~20	~100	~300 *
Eff.emittance lifetime, hr	~14	~26	~31	~16	n/a
Luminosity lifetime, hr	~10	~13	~10	~9	n/a

Pbar Only Store: <4% loss from Inj to LB

Pbar Losses: sqrt(time), cogging, ramp; P-loss

Beam-Beam @ Injection: Shaving

Pbar intensity decays after injection as exp(-t^{0.5})

- dN_pbar scales approx. as
 - > Sqrt(time)
 - Chromaticity a, a=1..2
 - > N_protons^b, b=0.5...1 (?)

Also

- Larger for larger emittance
- Larger for larger dp/p

Pbar Loss on Ramp: Aperture+Emittance+Beam-Beam

03/05/04

Beam-Beam in Tev

Model w/o Beam-Beam and Store 3245

Beam-Beam Tune Shifts

$$\xi = \frac{N_p r_p}{4\pi\varepsilon_p}$$

head-on tune shift per IP, now with N_p=245e9 and 95% emittance 20p total max head-on tuneshift is 0.018 for pbars, 0.004 for protons

tune shift for separated beams is smaller:

$$\Delta v = \sum_{i} \frac{\beta_{i} N_{p} r_{p}}{2 \gamma \pi d_{i}^{2}} = \sum_{i} \frac{2\xi}{(d_{i} / \sigma_{i})^{2}}$$

but: a) always present

- b) MANY near-misses i = 70
- c) different bunch-by-bunch
- d) HV separator limited: gd2 scales as V2 / g

Tevatron Working Points

03/05/04

Beam-Beam in Tev

Evolution of Pbar Emittance

Pbar Bunch Emittance Growth

"Scallops" in Pbar Bunch Emittances

Facts about "Scallops"

- "Scallops" is beam-beam phenomenon, started to occur after N_protons exceeded 180e9/bunch in ~Jan 2003, do not take place in every store even with N_p >180e9/bunch
- "Scallops" occur in both planes, but often more prominent in vertical
- Duration of faster emittance growth is 15-60 min
- Pbar emittance does not exceed the proton one
- "Scallops" are dependent on tunes, strong near Q=0.6; vertical tune change -0.002 can significantly reduce scallops, that has also been confirmed by TEL studies.
- Small "scallops" were seen in protons
- Scallops are the same in all three trains of bunches (vary <20%)

1.76Hz Schottky Spectra

- P Lebrun A.Jansson
 - Q and 1-Q lines are seen
 - Fit gives:
 - Betatron frequency
 - > dP/P ∞ sum of two widths
 - > C_vh ∞ difference of two widths
 - > Fmittance ∝ area under the peaks
 - Can do that for each bunch

Pbar Tunes Drift Down due to Beam-Beam

03/05/04

Beam-Beam in Tev

Measured vs Calc'd Pbar Bunch Tunes

03/05/04

Beam-Beam in Tev

Measured vs Calc'd Chromaticites

03/05/04

Beam-Beam in Tev

High Proton Losses and Shaving at HEP

- (re)Started at the end of July'03
- Empirically found that reduced C_v and variation of tunes can help but not drastically
- Cogging scan was not helpful
- Losses >5 times smaller without pbars
- Losses vary bunch-by-bunch ("staircase")

Loss of protons due to pbar non-linearities

Pbar Emittance Matters for Proton Losses @ HEP

These Losses Less of a Problem Now

Reasons:

- a) Proton emittance reduced : MI→Tev inj dilution reduced after shutdown, smaller p-emittances from Booster since Jan'04
- b) Pbar emittance increased : due to larger stacks we shoot from nowdays

Possibilities for future:

- a) Explore wider tune region
- b) Shave protons in MI
- c) BBcompensation

Just Another Puzzle: Collisions OFF-Waist

... need more systematic studies

03/05/04

Beam-Beam in Tev

Luminosity Lifetime vs Helix Amplitude – Store 3247

Understanding Beam-Beam: "Wish List"

- Simulate Sqrt(Time) and cogging affects at 150
 - > Predict aperture/orbit/N_p/N_pbar sensitivity
- Loss on ramp
 - > Does it make sense to do final cogging at 150?
- "Scallops" and poor proton lifetime at start HEP
 - > Demonstrate in simulations, what matters Q, C_xy, coupling?
 - > consider Run IIU parameters
- Losses vs longitudinal IP position, crossing angle
 - > Explain why, set tolerances
- Lifetime(s) vs helix size
- Strong-strong beam-beam what to expect in RunIIU
- Beam-Beam Compensation what to compensate, how

Peak Luminosity Factors

$$L[e30] = 0.17 \frac{N_p N_{\overline{p}}}{\beta^* (\varepsilon_p + \varepsilon_{\overline{p}})} H(\sigma_s / \beta^*)$$

	02/04	F'Y'04	FY'07
Luminosity, e30	52	62	275
Protons/bunch, e9	235	260	270
Pbars/bunch, e9	30	31	127
Beta at IP, m	~ 0.42	0.35	0.35
$\mathcal{E}_p + \mathcal{E}_{\overline{p}}, \pi \mu \mathbf{m}$	23+14	23+14	20+17
Hourglass	0.68	0.62	0.65

00/04

03/05/04

Beam-Beam in Tev

Backup slides 1

Backup slides 2

03/05/04

Beam-Beam in Tev

TEL Suppresses Pbar V-Size Growth: ½ hr in store

29

Pbar loss on ramp on Ramp

Beam-Beam Effects in Protons - 2002

- See losses in squeeze in store #1868
 - Losses of bunches #12,24,36 were small (1e9/min)
 - All other bunches lost intensity very fast (4e9/min)
 - That resulted in quench at A11

03/05/04

Beam-Beam in Tev

Proton Losses While Cogging Pbars

Proton losses induced by Pbars

Bunch #

Proton Intensity and Emittances ~Uniform

03/05/04

Beam-Beam in Tev

Proton RF Phase - Beam Loading

→ results in 3cm variation of IP z-position

Pbar bunch positions vary due to beam-beam

Beam-Beam in Tev

- Shiltsev

03/05/04

37

Pbar bunch intensities and sizes VARY (from AA)

03/05/04

Beam-Beam in Tev